Técnicas de minería de datos aplicadas al diagnóstico de entidades clínicas

La Universidad de las Ciencias Informáticas (UCI), posee varios centros de desarrollo de software. El Centro de Informática Médica (CESIM) es uno de ellos, encargado del desarrollo de aplicaciones para el sector de la salud; entre estas se encuentra el Sistema Integral para la Atención Primaria de la Salud (alas SIAPS), el cual posee un componente de tipo Sistema Clínico de Soporte para la Toma de Decisiones (CDSS), para que facilite el procesamiento analítico en línea y la minería de datos y que servirá además al resto de los ambientes bajo un escenario tecnológicamente sólido. Actualmente en el Centro de Toma de Decisiones se está manejando la información con técnicas estadísticas; sin embargo, con estas técnicas no se está aprovechando al máximo la información almacenada.

Las Historias Clínicas Electrónicas (HCE) pertenecientes al alas SIAPS, se encuentran almacenadas en un gran repositorio y su información se envía periódicamente a un Datamart. Dado el gran volumen de datos acumulado en él, y la incapacidad de los especialistas de identificar patrones de comportamiento y extraer conocimiento oculto en los datos almacenados para apoyar sus decisiones, surge la necesidad de aplicar la minería de datos.

En la actualidad, la Hipertensión Arterial se ha convertido en una de las primeras causas de muertes en el mundo. Según el reporte de la Organización Mundial de la Salud (OMS) del 2012 1 de cada 3 personas en el mundo padece de Hipertensión Arterial; además agrega que 1 de cada 10 personas es diabética. Algunos autores como Cumbá, coinciden que anualmente existen 7.2 millones de muertes por enfermedades del corazón. La hipertensión arterial es la segunda causa de muerte a nivel mundial, se reconoce internacionalmente como “muerte silenciosa” pues en la mayoría de los casos los pacientes tienden a ser asintomáticos.

Debido al gran volumen de datos existentes en el datamart, se dificulta la toma de decisiones de los especialistas para realizar un análisis rápido y efectivo y de esta manera encontrar información útil y valiosa oculta en ellos; por otra parte, la no predicción del comportamiento futuro de algunos problemas de salud presentes en las HCE con un alto porcentaje de certeza, basado en el entendimiento del pasado.

La minería de datos es un área de la inteligencia artificial que permite darle solución al problema descrito, la misma se basa en varias disciplinas, algunas de ellas más tradicionales, se distingue de ellas en la orientación más hacia el fin que hacia el medio. Y el fin lo merece: ser capaces de extraer patrones, de describir tendencias y regularidades, de predecir comportamientos y, en general, de sacar partido a la información computarizada que nos rodea hoy en día y que permite a los individuos y a las organizaciones comprender y modelar de una manera más eficiente y precisa el contexto en el que deben actuar y tomar decisiones.

En este artículo se propone exponer, mediante la combinación de dos modelos matemáticos, cómo se puede contribuir al diagnóstico de enfermedades, usando técnicas de minería de datos. Sigue leyendo

La Mina de Oro escondido por los Datos Durmientes

Después de los estragos de proyecto CRM de principios del siglo, una segunda ola irrigó la informática de empresa, a base de cloud, sencillez y de informática analítica. Un fenómeno que revuelve el papel y las atribuciones del DSI. Flashback y prospectiva.

Al principio de los años 2000, la informática decisoria estalló, permitiéndoles a los responsables explotar el yacimiento de datos que “dormían” sobre sus servidores: análisis de los historiales clientes, detección de los productos más apreciados, análisis de márgenes, los resultados por zona comercial… La informática se convertía en una ayuda a la decisión. Sigue leyendo

La Era de la Capacidad Predictiva en el Sector Sanidad

A lo largo y ancho del mundo, la industria de la Sanidad está viviendo una transformación trascendental. Se está pasando de una era caracterizada por la recopilación de información y la generación de informes a un tiempo en el que priman el análisis de datos y la capacidad predictiva.

Los gigantescos desafíos que enfrenta la Salud hoy son más que suficientes para forzar un mejor uso de la analítica de datos. Se requiere que los gerentes estén mejor informados para tomar decisiones más inteligentes. Hace falta entablar una batalla campal a la ineficiencia arraigada en el sector, donde, históricamente, se produce un altísimo porcentaje de errores prevenibles. Algunos de los cuales, cuestan vidas. En España, por ejemplo, 8 de cada 10.000 personas mueren prematuramente en condiciones que podrían evitarse con atención médica oportuna y eficaz (OCDE, 2011). Probablemente, casi todas esas muertes prematuras pueden atribuirse al ineficiente manejo de la información médica.

Sigue leyendo

Analítica Predictiva para Casinos

Los casinos generan una enorme cantidad de información: desde qué salón prefieren ciertos clientes, hasta cuáles son los jugadores más rentables. En vez de acumular polvo electrónico, los petabytes de datos que acumulan los modernos casinos en la actualidad pueden ser bien aprovechados. La analítica puede descomponer el almacén de datos para volver esa información más significativa. La técnica predictiva aplicada a los juegos de casino permite extrapolar tendencias, validar hipótesis y predecir comportamientos de los apostadores.

Sigue leyendo